Infectious Cerebral Vein Thrombosis and Abnormal Presentation of Leptomenigitis as a Complication from a Periodontitis in a Hispanic Male

Sarmad Said, M.D., PGY1
Haider Alkhateeb, M.D., PGY1
Chad Cooper, M.D., PGY1
Sucheta Gosavi, M.D.

ABSTRACT

Background: Sinus vein thrombosis is a rare form of stroke that results from thrombosis of the dural vein sinus. Despite the variety of diagnostic procedures and treatment, septic thrombosis of the cavernous sinus can cause significant morbidity and mortality if not diagnosed and treated as an emergency. The clinical presentation of proptosis that occurs suddenly accompanied by erythema of the eyelid and limitation of ocular movement should alert the clinician of the possibility of cavernous sinus thrombosis.

Case presentation: A 38-year old Hispanic male presented with pounding headache, mainly in the occipital region that began 1 week prior to hospital admission. During the hospitalization the patient subsequently developed a progressive worsening of proptosis, lacrimation and neck pain. The MRI and venography of the brain showed a CVT with a reactive diffuse leptomeningitis. The underlying cause was a chronic dental infection. The patient was treated with course of antibiotics and discharged. A few weeks later the repeated imaging studies showed a resolution of the CVT and leptomeningitis.

Conclusion: Although rare, SVT remains a potentially lethal complication of infections that involve the sinuses, face, ears and oral cavity. The early recognition and differentiation from other diseases is keys to reducing mortality rates and long-term sequelae. Advances in imaging, especially CT and MRI have contributed substantially to the rapid diagnosis of the condition.

Introduction:

Cerebral venous thrombosis (CVT) is an uncommon cerebrovascular disease presenting with a remarkably wide spectrum of signs and mode onset. CVT may occur as a complication of infectious or noninfectious processes. Septic thrombosis describes a thrombophlebitic process affecting the cavernous sinus with an infective etiology. Reviews of large single centre series from the preantibiotic and early antibiotic era had documented that infections of the middle third of the face were responsible for most cases of CST which accounted for approximately 60 to 80% of which nasal furunculosis was the most common cause. Organisms may reach the cavernous sinus from the face by an antegrade route along the ophthalmic veins which is connected to the angular veins, or by a retrograde route along the emissary veins that are connected to the pterygoid venous plexus. In up to 25 per cent of cases where a facial furuncle is responsible, it has either been previously manipulated by the patient or incised by the surgeon. Staphylococcus aureus is the most frequently cultured organism in these infections accounting for 70%, followed by Streptococcus species at 20%.

Septic thrombosis of the dural venous sinuses is a rare but often catastrophic complication by a variety of infectious processes. Bacterial meningitis and parasinal sinusitis can be a complication of superior sagittal thrombosis, resulting in an 80% mortality rate. Septic CVT can occur at any age but typically affects young adults, most commonly in the 3rd decade of life. The incidence is 3.4/100000 with 3:1 female predominance.

Early diagnosis can be facilitated by prompt recognition of the clinical and radiological findings that are suggestive of venous occlusion of the cavernous sinus. The vast majority of cases of septic CST have an acute presentation associated with prominent features of sepsis. The latent period between symptoms of the predisposing infection and the clinical features of septic CST varies between one and twenty-one days, but averaged about five to six days in one series. Pyrexia occurs in over 90 per cent of cases, which is usually severe, and may have a 'picket fence' pattern suggestive of thrombophlebitis. Other features of sepsis may be the presence of tachycardia, vomiting, hypotension, confusion, rigors and coma. Headache has been reported in about 52–90 per cent and is typically unilateral, with a retro-orbital or frontotemporal area distribution.

Impaired vision is uncommon. Nevertheless, visual loss may be caused by corneal ulceration secondary to proptosis and loss of the corneal reflex, occlusion of the internal carotid, ischemic optic neuropathy, orbital congestion, toxic neuritis of the optic nerve, or embolic phenomena.

CT and MRI are the primary radiological modalities used to confirm the diagnosis if suspected on clinical grounds. The most sensitive investigation of intracavernous occlusive defects is venography. Nowadays, cerebral angiography has been reserved for the definitive assessment of intracavernous aneurysms after they have been detected and monitored using CT or MRI.

Undoubtedly, antibiotics have the greatest impact on the prognosis of septic CST. Postmortem studies have shown that there is less extensive thrombosis within the cavernous sinuses since the advent of antibiotics.

We present a case of septic cavernous sinus thrombosis as a complication of a leptomeningitis, which resulted from a peri-Continued on page 11
Infectious Cerebral Vein Thrombosis and Abnormal Presentation of Leptomeningitis as a Complication from a Periodontitis in a Hispanic Male (Continued)

odontitis in a Hispanic male patient.

Case Presentation
38 year old right handed, Hispanic male without a significant past medical history presented to the ER with a progressive pounding occipital headache that started almost 1 week prior to admission. Approximately, 2 weeks prior to admission, he visited his PCP in Juarez, Mexico and was given amoxicillin for an unknown reason. Four days ago he visited the ER in another hospital and was given NSAIDs and diazepam and was discharged home. For two days he experienced progressive lacrimation, eye discomfort aggravated by eye movement and minimal swelling around his left eye. He described subjective febrile episodes. He denied chest pain or shortness of breath. Social history was negative for tobacco, alcohol or drug use. No pertinent physical findings noted except minimal left eye proptosis and lacrimation. No obvious neurological deficits, however the patient had a minimally positive Kernig sign. The laboratory findings were positive for a leukocytosis of 14.81 but otherwise other lab values were unremarkable.

CT of the brain was done in emergency department. No acute intracranial trauma was noted. Multiple attempts to perform a lumbar puncture in the ER were unsuccessful. Due to the clinical presentation, he was started on empiric antibiotics of vancomycin and ceftriaxone and an antiviral regimen of acyclovir while awaiting the LP to be done on the following day by Interventional Radiology.

On the following day, it was noted that there was a progressive bulging and swelling of the left eye. In the early morning the patient was unable to open his left eye. A few hours later on the same day he complained about double vision. At this time the neck pain and headache were constant.

The lumbar puncture performed by IR showed WBC of 631/ul, SEG 68%, bands 3%, lymphocytes 20%, monocytes 9%, RBC 30/ul, Protein 99 mg/dl and Glucose 60 mg/dl. At this time, our differential diagnosis included meningitis, cavernous sinus thrombosis or a retro-orbital abscess. MRI of brain showed diffuse supra and infratentorial leptomeningitis with acute thrombosis of the left cavernous sinus, superior petrosal sinus, sigmoid sinus, jugular bulb and suboccipital vein (Figure 1). It was negative for venous infarct, intracranial hemorrhage, midline shift or hydrocephalus. Facial CT was performed and showed a periodontitis in tooth #17 and 18 without destruction of the mandibular alveolar septae and without periodontal abscess.

On the 3rd day of hospitalization the antiviral treatment was discontinued, then metronidazole and dexamethasone were added. The microbiological work up was negative for West nile virus, HSV, cryptococcus antigen, group B streptococcus, haemophilus B, streptococcus pneumoniae, neisseria meningitis. On the following day he noticed a remarkable improvement in his headache and neck pain and marked regression of the left eye swelling.

A PICC line was placed on the 8th day and the patient was subsequently discharged on metronidazole for two more weeks and instructed to follow up with a dentist immediately to treat his periodontitis, which was determined to be the most likely cause of the cerebral vein thrombosis.

3 weeks after the discharge the patient was presented for a follow up MRI of the brain which showed a resolution of meningitis and the abnormal leptomeningeal enhancement compared to 9/18/2012 as well as resolution of left cavernous sinus thrombosis with continued left transverse, sigmoid, and jugular vein thrombosis (figure 2).

Discussion:
CVS is associated with significant mortality, which is estimated at 30% but can range from 14–79% according to some case reviews. Approximately half of patients will suffer a residual morbidity, typically from associated cranial neuropathies.11 In general infection may spread within veins from other sources to the cavernous sinuses as a contiguous phlebitis or thrombophlebitis or even as septic emboli that become trapped by the numerous trabeculations within the cavernous sinus.12

Oral and dental infections were implicated in less than 10 percent of cases of septic

Continued on page 12
Infectious Cerebral Vein Thrombosis and Abnormal Presentation of Leptomeningitis as a Complication from a Periodontitis in a Hispanic Male (Continued)

CST in the early antibiotic era, but are now rare. Infections may spread from the maxillary molar teeth to then enter the orbit via the inferior orbital fissure and then spread into the cavernous sinus. However, a variable character and distribution of headache can occur, which reflects its numerous causes. Nuchal rigidity, which was mild in our patient, has been found in as many as 40% of patients with CST and may be due to concurrent bacterial meningitis or meningeal irritation. Septic CST and the inciting infection are frequently complicated by other intracranial infections including meningitis, encephalitis, brain abscess, pituitary infection, epidural abscess and subdural empyema.

Diagnosis of cavernous sinus thrombosis is usually made with MRI scan with venogram; fine-cut CT scan is less sensitive. Cerebral angiography with late venous views is the gold standard in the diagnosis of CST. Because of the morbidity and poor patient acceptance, this technique should only be performed in cases where the diagnosis is doubtful after MRI. However, MRI still remains the routine standard of diagnostic care. CSF cultures may be positive if there is coexistent meningitis. Empirical antimicrobial therapy will depend on the antecedent clinical condition, but should always include an anti-staphylococcal agent. An empirical combination, such as parenteral metronidazole, vancomycin and ceftriaxone will achieve a reasonable proportion of CSF and brain penetration against S. aureus (including CA-MRSA strains) as well as the usual sinus pathogens.

The role and duration of anticoagulation in the management of cavernous sinus thrombosis are controversial. Anticoagulation is most beneficial if given early, but is contraindicated in hemorrhagic intracranial complications. The duration of anticoagulation has varied in several reports from two weeks to several months.

Treatment of septic CST must be prompt and targeted. The primary infection must be aggressively drained and the underlying cause eradicated. High-dose intravenous antibiotics that cross the blood-brain barrier and are empirically effective against coagulase-positive staphylococcus and streptococcus are indicated. Nafcillin, third-gener- ation cephalosporins such as cefotaxime, and chloramphenicol are appropriate, pending culture and sensitivity results.

Other supportive treatments that may be necessary in septic CST include fluid resuscitation, proper eye care, and oxygen. Steroids may be essential in the acute setting to prevent Addisonian crisis as well as in replacement doses in the long-term. However, excluding this indication and the occasional cases where cerebral edema has developed, the role of steroids in septic CST is contentious. Steroids are potentially harmful because their immunosuppressive effects may accelerate sepsis, but this option must be weighed against the potential benefit of reducing cranial nerve dysfunction or orbital inflammation.

In the differential diagnostic setting of SVT an early recognition of the clinical presentation, abrupt management with effective broad spectrum antibiotics and supportive therapy are essential for full or a significant partial recovery. The primary source of sepsis may be a distant focus with septicemia preceding thrombosis of the cavernous sinus. Alternatively, infection may spread from other sources, i.e. facial regions via the facial venous plexus or from the sphenoid sinus, or as in our patient from a dental infection, directly to the adjacent cavernous sinus.

REFERENCES

Sarmad Said, M.D., PGY1, Department of Internal Medicine, Texas Tech University Health Sciences Center - Paul L. Foster School of Medicine.

Haider Alkhatteeb, M.D., PGY1, Department of Internal Medicine, Texas Tech University Health Sciences Center - Paul L. Foster School of Medicine.

Chad Cooper, M.D., PGY1, Department of Internal Medicine, Texas Tech University Health Sciences Center - Paul L. Foster School of Medicine.

Sucheta Gosavi, M.D., Assistant Professor, Department of Internal Medicine, Texas Tech University Health Sciences Center - Paul L. Foster School of Medicine.