INTRODUCTION AND BACKGROUND

“PHACES syndrome” is the association of posterior fossa malformations, hemangiomas, arterial anomalies, coarctation of the aorta and other cardiac defects, eye anomalies and sternal malformations. We describe a case of a patient in our local population with PHACES syndrome. Our report contributes to the limited literature currently available on this rare condition and also emphasizes the approach to diagnosis of patients who present with these clinical features.

CASE PRESENTATION

This is the case of a 19 y.o. hispanic girl, born at 40 weeks of gestation to non-consanguineous parents without complications, who developed an enlarging strawberry hemangioma at the right side of her neck which was excised at 3 months of age. She had other hemangiomas that resolved spontaneously by 5 years of life. At 13 years of age she developed a small dural base hemangioma overlying the left temporal bone, multiple hemangiomas at the right intraorbital area, a large neck lymphangioma, and skin and muscle hemangiomas. No treatment was pursued at that time.

At 16 years of age she presented with progressive disease with right sided hemangiomas on the chin, upper eyelid, ear pinna, chest wall, right labia majora, and hemangiomas on the right and left flank areas. On physical examination, there was no heart murmur, her blood pressure was normal and abdominal exam revealed a supraumbilical raphe.

The head CT scan showed intracranial subdural hemangiomas in the right frontal convexity and left temporal lobe, Chiari Type I malformation in the posterior fossa, prominent branch of the right middle cerebral artery and intraorbital hemangioma with calcification. The neck CT scan showed a right intra-parotid hemangioma and left thyroid gland hemangioma displacing the carotid artery. An abdominal CT revealed a hemangioma in the right adrenal gland and in the right paraspinal musculature at L3 level.

The patient was treated with alpha-2a interferon and sclerosis treatment which reduced the hemangiomas and lymphangiomas. Her right intraorbital hemangioma caused proptosis, blurring of vision and headaches. She developed frequent gum bleedings, and chronic dysphagia from neck hemangiomas. She had mild shortness of breath with minor exercise which resolved as her cervical hemangiomas responded to sclerotic therapy. She also developed sciatic pain presumably caused by her right gluteal hemangioma and depression due to her chronic illness. At present, her hemangiomas and lymphangiomas are still persistent. She is also currently treated for Glanzmann thrombastenia.

DISCUSSION

Our patient presented with at 5 features of the syndrome: Chiari-type I malformation with downward tonsillar ectopy in the posterior fossa (P), extensive hemangiomas (H), prominent branch of the right middle cerebral artery (A), exophthalmos (E), and supraumbilical raphe (S).

The pathogenesis of the syndrome is unknown but Frieden reported an infant with PHACE syndrome of which a posterior fossa malformation was detected on prenatal ultrasound at 12 weeks gestation, suggesting its origin during the first trimester of pregnancy. Several authors postulated that sternal clefting and facial hemangiomas develop between 8 to 10 weeks of gestation. Several authors postulated that sternal clefting and facial hemangiomas develop between 8 to 10 weeks of gestation. Bhattacharya suggest an abnormality of cell proliferation and apoptosis and further studies are awaited on possible genetic implication since extraordinary female predominance had been reported.

Published literature reported cases with at least three of the features present in a patient; some reported a slight variation in the clinical presentation of a feature which could represent a milder form of the disease entity.

Structural and cerebrovascular brain malformations occur in over half of the reported PHACES patients. Dandy-Walker malformation is the most common. This is characterized by hypoplastic or absent cerebellar vermis and markedly dilated fourth ventricle/posterior fossa cyst. Frieden described 43 patients with extensive hemangiomas, 74% of which have Dandy-Walker. Metry reported 6 out of 14 patients with PHACE syndrome with Dandy-Walker malformation. Other malformations include agenesis of the corpus callosum, cerebellar atrophy, septum pellucidum, isolated frontal lobe calcification, microcephaly and arachnoid cysts.

Hemangiomas are frequent in childhood but their association with other anomalies is rare. The hallmark of PHACES syn-
drome is a large, segmental, plaque-like hemangioma which may involve one to several facial dermatome. Metry reported predominance of left-sided facial hemangiomas among patients with the syndrome. Extracutaneous location of the hemangioma can occur and there is a high risk for the hemangiomas to develop in the airway (22% of reported cases by Metry) which poses significant airway compromise.

Arterial anomalies include bilateral agenesis of the internal carotid arteries, persistent fetal vasculature, transcranial collaterals from the external carotid arteries and agenesis of the vertebrobasilar system. The cerebrovascular anomalies are concerning due to progressive arterial occlusion, stroke and other neurologic complications. Drolet reported 5 infants with PHACE syndrome who suffered arterial stroke.

Metry reviewed 130 patients with PHACE syndrome; more than one third of these cases have cardiac anomalies. Coarctation of the aorta is the most common defect reported. Other anomalies seen include PDA, VSD, ASD, tricuspid and aortic atresia.

Eye anomalies include optic nerve atrophy, exophthalmos, microphthalmos, colobomas, strabismus, congenital cataracts and glaucoma.

Sternal clefting and/or supraumbilical abdominal raphe complete the spectrum of the syndrome. Sternal cleft, is a rare congenital malformation caused by failure of the sternum to fuse during the third month of embryologic development. Metry reported 43 out of 130 PHACES patients with ventral development defect, 12 patients with both sternal cleft and supraumbilical raphe, and 2 patients have supraumbilical raphe alone.

In patients with large facial and multiple hemangiomas, it is important to conduct detailed neurological examination to look for posterior fossa malformations, do an extensive cardiovascular exam to look for cardiac and arterial anomalies, refer to an ophthalmologist to rule out eye defects; special attention should be given to sternal examinations as well as search for hemangiomas in airway localization.

Glanzmann thrombastenia was also an incidental finding on our index patient. This is an inherited disorder of platelet function, characterized by a defect in the platelet glycoprotein IIb/IIIa complex, causing abnormal bleeding. Whether this is an isolated event or could be a variant or part of the association is undetermined and further investigation should be done. To our knowledge, there had been no case reported of a patient with PHACES syndrome and Glanzmann thrombastenia.

REFERENCES

A Case Report of Phaces Syndrome: Widespread Hemangiomas Associated With Arnold Chiari Malformation Type I, Right Middle Cerebral Anomaly and Supraumbilical Raphe (Continued)


Marifi Cabaluna, M.D., PL-2, Department of Pediatrics, Texas Tech University Health Sciences Center, El Paso.

Mary Lillian Tocyap, M.D., PL-3, Department of Pediatrics, Texas Tech University Health Sciences Center, El Paso, Texas.

Benjamin Carcamo, M.D., Clinical Assistant Professor, Department of Pediatrics, Texas Tech University Health Sciences Center, El Paso, Texas.